Skip to content

API Reference

ODMetrics main class implementation.

ODMetrics

ODMetrics class.

Compute the Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR) for Object Detection.

Source code in src/od_metrics/od_metrics.py
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
class ODMetrics:
    """
    ODMetrics class.

    Compute the Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR)
    for Object Detection.
    """

    def __init__(
            self,
            iou_thresholds: (float | list[float] | np.ndarray |
                             type[_Missing]) = _Missing,
            recall_thresholds: (float | list[float] | np.ndarray |
                                type[_Missing]) = _Missing,
            max_detection_thresholds: (int | list[int] | np.ndarray | None |
                                       type[_Missing]) = _Missing,
            area_ranges: (dict[str, list[float] | np.ndarray] | None |
                          type[_Missing]) = _Missing,
            class_metrics: bool = False,
            box_format: Literal["xyxy", "xywh", "cxcywh"] = "xywh",
            ) -> None:
        """
        Initialize.

        Parameters
        ----------
        iou_thresholds : float | list[float] | np.ndarray \
                          | type[_Missing], optional
            IoU thresholds.
            If not specified (`_Missing`), the default (COCO) is used and
            corresponds to the stepped range `[0.5,...,0.95]` with step
            `0.05` (`10` values).
            The default is `_Missing`.
        recall_thresholds : float | list[float] | np.ndarray \
                             | type[_Missing], optional
            Recall thresholds.
            If not specified (`_Missing`), the default (COCO) is used and
            corresponds to the stepped range `[0,...,1]` with step
            `0.01` (`101` values).
            The default is `_Missing`.
        max_detection_thresholds : int | list[int] | np.ndarray | None \
                                    | type[_Missing], optional
            Thresholds on maximum detections per image.
            If not specified (`_Missing`), the default (COCO) is used and
            corresponds to the list `[1, 10, 100]`.
            If `None`, no limit to detections per image will be set.
            The default is `_Missing`.
        area_ranges : dict[str, list[float] | np.ndarray] \
                       | None | type[_Missing], optional
            Area ranges.
            If not specified, the default (COCO) is used and corresponds to:
            <br>
            `{
                "all": [0 ** 2, 1e5 ** 2],
                "small": [0 ** 2, 32 ** 2],
                "medium": [32 ** 2, 96 ** 2],
                "large": [96 ** 2, 1e5 ** 2]
                }`
            If `None`, no area range limits will be set.
            The default is `_Missing`.
        class_metrics : bool, optional
            Option to enable per-class metrics (See `compute()` method).
            Has a performance impact.
            The default is `False`.
        box_format: Literal["xyxy", "xywh", "cxcywh"], optional
            Bounding box format.
            Supported formats are:<br>
                - `"xyxy"`: boxes are represented via corners,
                        x1, y1 being top left and x2, y2
                        being bottom right.<br>
                - `"xywh"`: boxes are represented via corner,
                        width and height, x1, y2 being top
                        left, w, h being width and height.
                        This is the default format; all
                        input formats will be converted
                        to this.<br>
                - `"cxcywh"`: boxes are represented via centre,
                        width and height, cx, cy being
                        center of box, w, h being width
                        and height.<br>
            The default is `"xywh"`.

        Returns
        -------
        None
        """
        constructor_model = ConstructorModel.model_validate(
            {
                "iou_thresholds": iou_thresholds,
                "recall_thresholds": recall_thresholds,
                "max_detection_thresholds": max_detection_thresholds,
                "area_ranges": area_ranges,
                "class_metrics": class_metrics,
                "box_format": box_format,
                },
            context={"default_value": DEFAULT_COCO, "default_flag": _Missing}
            )
        self.iou_thresholds: np.ndarray = constructor_model.iou_thresholds
        self.recall_thresholds: np.ndarray = (
            constructor_model.recall_thresholds)
        self.max_detection_thresholds: np.ndarray = (
            constructor_model.max_detection_thresholds)
        self.area_ranges: dict[str | None, list[float]] = (
            constructor_model.area_ranges)
        self.class_metrics: bool = constructor_model.class_metrics
        self.box_format: Literal["xyxy", "xywh", "cxcywh"] = (
            constructor_model.box_format)

    def compute(
            self,
            y_true: list[dict],
            y_pred: list[dict],
            extended_summary: bool = False,
            ) -> dict[str, float | int | list[int]
                      | dict | np.ndarray | partial]:
        """
        Compute metrics.

        Parameters
        ----------
        y_true : list[dict]
            A list consisting of dictionaries each containing
            the key-values: each dictionary corresponds to the ground truth
            of a single image.
            Parameters that should be provided per dict:

                boxes : list[list[float]] | np.ndarray
                    List of floats lists or `np.ndarray`; the length of the
                    list/array correspond to the number of boxes and each
                    list/array is 4-float specifying the box coordinates in
                    the format specified in the constructor.
                labels : list[int] | np.ndarray
                    List of integers or `np.ndarray` specifying the ground
                    truth classes for the boxes: the length corresponds to
                    the number of boxes.
                iscrowd : list[bool | Literal[0, 1]] | np.ndarray
                    List of integers or `np.ndarray` specifying crowd regions:
                    the length corresponds to the number of boxes.
                    The values can be `bool` or `0`/`1` indicating whether the
                    bounding box indicates a crowd of objects.
                    Value is optional, and if not provided it will
                    automatically be set to `False`.
                area : list[float] | np.ndarray
                    A list of `float` or `np.ndarray` specifying the area of
                    the objects: the length corresponds to the number of
                    boxes.
                    Value is optional, and if not provided will
                    be automatically calculated based on
                    the bounding box provided.
                    Only affects which samples contribute the specific
                    area range.
        y_pred : list[dict]
            A list consisting of dictionaries each containing
            the key-values: each dictionary corresponds to the predictions
            of a single image.
            Parameters that should be provided per dict:

                boxes : list[list[float]] | np.ndarray
                    List of float lists or `np.ndarray`; the length of the
                    list/array correspond to the number of boxes and each
                    list/array is 4-float specifying the box coordinates in
                    the format specified in the constructor.
                scores : list[float] | np.ndarray
                    List of floats or `np.ndarray` specifying the score for
                    the boxes: the length corresponds to the number of boxes.
                labels : list[int] | np.ndarray
                    List of integers or `np.ndarray` specifying the ground
                    truth classes for the boxes: the length corresponds to
                    the number of boxes.
        extended_summary : bool, optional
            Option to enable extended summary with additional metrics
            including `IoU`, `AP` (Average Precision), `AR` (Average Recall)
            and `mean_evaluator` (`Callable`).
            The output dictionary will contain the following extra key-values:

                IoU : dict[tuple[int, int], np.ndarray]
                       A dictionary containing the IoU values for every
                       image/class combination e.g. `IoU[(0,0)]`
                       would contain the IoU for image `0` and class `0`.
                       Each value is a `np.ndarray` with shape `(n, m)`
                       where `n` is the number of detections and `m` is
                       the number of ground truth boxes for that image/class
                       combination.
                AP : np.ndarray
                      Average precision: a `np.ndarray` of shape
                      `(T, R, K, A, M)` containing the precision values.
                      Here:
                          - `T` is the number of IoU thresholds
                          - `R` is the number of recall thresholds
                          - `K` is the number of classes
                          - `A` is the number of areas
                          - `M` is the number of max detections per image
                AR : np.ndarray
                     A `np.ndarray` of shape `(T, K, A, M)` containing the
                     averag recall values.
                     Here:
                         - `T` is the number of IoU thresholds
                         - `K` is the number of classes
                         - `A` is the number of areas
                         - `M` is the number of max detections per image
                mean_evaluator : Callable
                    Mean evaluator function.
                    Parameters are:
                        iou_threshold : (float | list[float] | np.ndarray
                                         | None), optional
                            IoU threshold on which calculate the mean.
                            It can be a `float`, a list of floats, `np.ndarray`
                            or `None`; all values must be inlcuded in the
                            constructor argument `iou_thresholds`.
                            If `None`, all input `iou_thresholds` will be used.
                            The default is `None`.
                        area_range_key : (str | list[str] | np.ndarray
                                          | None), optional
                            Area range key on which calculate the mean.
                            It can be a `str`, a list of strings, `np.ndarray`,
                            or `None`; all values must be included in the
                            constructor argument `area_ranges`.
                            If `None`, all input `area_ranges` keys will be
                            used.
                            The default is `None`.
                        max_detection_threshold : (int | list[int] |
                                                   np.ndarray | None), optional
                            Threshold on maxiumum detections per image on
                            which calculate the mean.
                            It can be a `int`, a list of integers, `np.ndarray`
                            or `None`; all values must be inlcuded in the
                            constructor argument `max_detection_thresholds`.
                            If `None`, all input `max_detection_thresholds`
                            will be used.
                            The default is `None`.
                        label_id : (int | list[int] | np.ndarray
                                    | None), optional
                            Label ids on which calculate the mean.
                            If `class_metrics` is `True`, `label_id` must be
                            included in the label ids of the provided `y_true`.
                            If `class_metrics` is `False`, `label_id` must be
                            `-1` (in this case equivalent to `None`).
                            If `None`, all labels will be used.
                            The default is `None`.
                        metrics : (Literal["AP", "AR"]
                                   | list[Literal["AP", "AR"]] | None),
                                   optional
                            Metrics on which calculate the mean.
                            If `None`, both `"AP"` and `"AR"` will be used.
                            The default is `None`.
                        include_spec : bool, optional
                            Whether to include mean settings specification.
                            The default is `False`.
                        prefix : str, optional
                            Prefix to add to metrics keys.
                            The default is `m`.

        Returns
        -------
        dict[str, float | int | list[int] | dict | np.ndarray | partial]
            The format of the output string metric ids is defined as:

            `{metric}@[{iou_thresholds} | {area_ranges}
                      | {max_detection_thresholds}]`

            If a field is `None`, the corresponding string field will be emtpy,
            e.g., `{metric}@[{iou_thresholds} | {area_ranges}]`
            indicate metrics calculated without limit to detections per image,
            i.e. `max_detections_thresholds` set to `None`.
            Assuming that the parameters passed to the constructor
            are the default ones (COCO), the output dictionary will
            contain the following key-values: <br>
                `mAP@[.5 | all | 100]` <br>
                `mAR@[.5 | all | 100]` <br>
                `mAP@[.75 | all | 100]` <br>
                `mAR@[.75 | all | 100]` <br>
                `mAR@[.5:.95 | all | 1]` <br>
                `mAR@[.5:.95 | all | 10]` <br>
                `mAR@[.5:.95 | all | 100]` <br>
                `mAP@[.5:.95 | all | 100]` <br>
                `mAP@[.5:.95 | large | 100]` <br>
                `mAR@[.5:.95 | large | 100]` <br>
                `mAP@[.5:.95 | medium | 100]` <br>
                `mAR@[.5:.95 | medium | 100]` <br>
                `mAP@[.5:.95 | small | 100]` <br>
                `mAR@[.5:.95 | small | 100]` <br>
            If `class_metrics` is `True`, the output dictionary will contain
            the additional key `class_metrics`, a dictionary with class as key
            and value each of the above metrics.
            If `extended_summary` is `True`, the output dictionary will contain
            the additional keys `IoU`, `AP`, `AR` and `mean_evaluator`.
            (See `extended_summary`)
        """
        # Image ids
        images_ids = list(range(len(y_true)))

        # Parse Annotations
        compute_model = ComputeModel.model_validate(
            {
                "y_true": y_true,
                "y_pred": y_pred,
                "extended_summary": extended_summary,
                },
            context={"box_format": self.box_format}
            )
        y_true = [y_true_.dict() for y_true_ in compute_model.y_true]
        y_pred = [y_pred_.dict() for y_pred_ in compute_model.y_pred]
        extended_summary = compute_model.extended_summary

        # Get label_ids from y_true
        label_ids = np.unique([_annotation["label_id"]
                               for _annotation in y_true]).tolist()
        _label_ids = label_ids if self.class_metrics else [-1]

        # y_true, y_pred --> default_dict (keys: (image_id, label_id))
        y_true_ddict = defaultdict(
            list,
            [(k, list(v)) for k, v in groupby(
                sorted(y_true, key=lambda x: (x["image_id"], x["label_id"])),
                key=lambda x: (x["image_id"], x["label_id"]))]
            )
        y_pred_ddict = defaultdict(
            list,
            [(k, list(v)) for k, v in groupby(
                sorted(y_pred, key=lambda x: (x["image_id"], x["label_id"])),
                key=lambda x: (x["image_id"], x["label_id"]))]
            )

        # Compute IoU
        ious = {(image_id, label_id): self._compute_iou(
            y_true=y_true_ddict,
            y_pred=y_pred_ddict,
            image_id=image_id,
            label_id=label_id,
            label_ids=label_ids,
            ) for image_id, label_id in product(images_ids, _label_ids)
            }

        # Evaluate each image
        images_results = [self._evaluate_image(
            y_true=y_true_ddict,
            y_pred=y_pred_ddict,
            image_id=image_id,
            label_id=label_id,
            label_ids=label_ids,
            area_range=_area_range,
            ious=ious
            ) for label_id, _area_range, image_id in
            product(_label_ids, self.area_ranges.values(), images_ids)
        ]

        # Aggregate results
        results = self._aggregate(
            label_ids=_label_ids,
            images_ids=images_ids,
            images_results=images_results,
            )

        # Mean evaluator
        mean_evaluator = partial(
            self._get_mean,
            results=results,
            label_ids=_label_ids
            )

        # Get standard output values (globally)
        standard_results = self._get_standard(
            mean_evaluator=mean_evaluator,
            label_id=None,
            prefix="m",
            )

        # Prepare output
        output: dict[str, float | int | list[int]
                     | dict | np.ndarray | partial] = {}
        output |= standard_results

        # Class metrics
        if self.class_metrics:
            output |= {
                "class_metrics": {
                    label_id: self._get_standard(
                        mean_evaluator=mean_evaluator,
                        label_id=label_id,
                        prefix="",
                        ) for label_id in _label_ids
                        }
                }

        # Add metadata
        output |= {
            "classes": label_ids,
            "n_images": len(images_ids)
            }

        if extended_summary:
            output |= ({k: v for k, v in results.items() if k in ["AP", "AR"]}
                       | {
                           "IoU": ious,
                           "mean_evaluator": mean_evaluator,
                           }
                       )

        return output

    def _compute_iou(
            self,
            y_true: defaultdict,
            y_pred: defaultdict,
            image_id: int,
            label_id: int,
            label_ids: list[int],
            ) -> np.ndarray:
        """
        Compute IoU.

        Parameters
        ----------
        y_true : defaultdict
            Ground truths.
        y_pred : defaultdict
            Predictions.
        image_id : int
            Image id.
        label_id : int
            Label id.
        label_ids : list[int]
            Overall label ids.

        Returns
        -------
        np.ndarray
            `np.ndarray` containing IoU values between `y_true` and `y_pred`.
        """
        if self.class_metrics:
            y_true_ = y_true[image_id, label_id]
            y_pred_ = y_pred[image_id, label_id]
        else:
            y_true_ = reduce(
                lambda x, y: x+y,
                [y_true[image_id, label_id] for label_id in label_ids],
                [],
                )
            y_pred_ = reduce(
                lambda x, y: x+y,
                [y_pred[image_id, label_id] for label_id in label_ids],
                [],
                )

        if not y_pred_ and not y_true_:
            return np.array([])

        # Sort predictions highest score first and cut off to
        # max_detection_thresholds
        y_pred_ = sorted(
            y_pred_,
            key=operator.itemgetter("score"),
            reverse=True
            )[: self.max_detection_thresholds[-1]]

        y_true_boxes = [yt["bbox"] for yt in y_true_]
        y_pred_boxes = [yp["bbox"] for yp in y_pred_]
        iscrowd = [yt["iscrowd"] for yt in y_true_]

        # Compute IoU between each prediction and ground truth region
        ious = iou(
            y_true=y_true_boxes,
            y_pred=y_pred_boxes,
            iscrowd=iscrowd,
            box_format="xywh",
            )
        return ious

    def _evaluate_image(  # pylint: disable=R0912
            self,
            y_true: defaultdict,
            y_pred: defaultdict,
            image_id: int,
            label_id: int,
            label_ids: list[int],
            area_range: list[float],
            ious: dict,
            ) -> dict[str, Any] | None:
        """
        Evaluate metrics for a single image.

        Parameters
        ----------
        y_true : defaultdict
            Ground truths.
        y_pred : defaultdict
            Predictions.
        image_id : int
            Image id.
        label_id : int
            Label id.
        label_ids : list[int]
            Overall label ids.
        area_range : list[float]
            Area range.
        ious : dict
            IoU dictionary.

        Returns
        -------
        dict[str, Any] | None
            Dictionary containing results given image and label.
            `None` if there is no ground-truths and detections for that
            specific `image_id` and `label_id`.
        """
        if self.class_metrics:
            y_true_ = y_true[image_id, label_id]
            y_pred_ = y_pred[image_id, label_id]
        else:
            y_true_ = reduce(
                lambda x, y: x+y,
                [y_true[image_id, label_id] for label_id in label_ids],
                [],
                )
            y_pred_ = reduce(
                lambda x, y: x+y,
                [y_pred[image_id, label_id] for label_id in label_ids],
                [],
                )
        if not y_true_ and not y_pred_:
            return None

        # Assign _ignore if ignore or outside area range.
        for yt_ in y_true_:
            if (
                    yt_["ignore"] or (yt_["area"] < area_range[0]
                                      or yt_["area"] > area_range[1])
            ):
                yt_["_ignore"] = 1
            else:
                yt_["_ignore"] = 0

        # Sort y_true ignore last
        if len(y_true_) == 0:
            y_true_indexes = ()
        else:
            y_true_indexes, y_true_ = zip(*sorted(
                enumerate(y_true_), key=lambda x: x[1]["_ignore"]))
        iscrowd = [int(yt["iscrowd"]) for yt in y_true_]

        # Sort y_pred highest score first and cut off y_pred to
        # max detection threshold.
        y_pred_ = sorted(y_pred_, key=operator.itemgetter("score"),
                         reverse=True)[: self.max_detection_thresholds[-1]]

        # Load computed ious
        ious = (ious[image_id, label_id][:, y_true_indexes]
                if len(ious[image_id, label_id]) > 0
                else ious[image_id, label_id]
                )

        iou_thresholds_len = len(self.iou_thresholds)
        y_true_len = len(y_true_)
        y_pred_len = len(y_pred_)
        # y_true_matches and y_pred_matches will contain ids of
        # matched prediction and ground truths respectively.
        y_true_matches = np.zeros((iou_thresholds_len, y_true_len))
        y_pred_matches = np.zeros((iou_thresholds_len, y_pred_len))
        y_true_ignore = np.array([yt["_ignore"] for yt in y_true_])
        y_pred_ignore = np.zeros((iou_thresholds_len, y_pred_len))
        if not len(ious) == 0:
            for iou_threshold_index, iou_threshold in enumerate(
                    self.iou_thresholds):
                for yp_index, yp_ in enumerate(y_pred_):
                    iou_ = min([iou_threshold, 1-1e-10])
                    # Information about best match so far
                    # match=-1 -> Unmatched
                    match_ = -1
                    for yt_index, yt_ in enumerate(y_true_):
                        # If this yt already matched, and not a crowd, continue
                        if (y_true_matches[iou_threshold_index, yt_index] > 0
                                and not iscrowd[yt_index]):
                            continue
                        # If yp matched to a previous gt (not ignore) and
                        # the new is ingore, stop
                        if (match_ > -1 and y_true_ignore[match_] == 0
                                and y_true_ignore[yt_index] == 1):
                            break
                        # If iou between yp and yt < iou threshold, continue
                        if ious[yp_index, yt_index] < iou_:
                            continue
                        # If match successful and best so far,
                        # store appropriately
                        iou_ = ious[yp_index, yt_index]
                        match_ = yt_index
                    if match_ == -1:
                        continue
                    # If match made store id of match for both dt and gt
                    y_pred_ignore[iou_threshold_index, yp_index] = (
                        y_true_ignore[match_])
                    y_pred_matches[iou_threshold_index, yp_index] = (
                        y_true_[match_]["id"])
                    y_true_matches[iou_threshold_index, match_] = yp_["id"]
        # set unmatched detections outside of area range to ignore
        out_area = np.array(
            [yp["area"] < area_range[0] or yp["area"] > area_range[1]
             for yp in y_pred_]).reshape((1, len(y_pred_)))
        y_pred_ignore = np.logical_or(
            y_pred_ignore,
            np.logical_and(y_pred_matches == 0,
                           np.repeat(out_area, iou_thresholds_len, 0))
            )
        # store results for given image and label
        return {
                "image_id": image_id,
                "label_id": label_id,
                "area_range": area_range,
                "max_detection_threshold": self.max_detection_thresholds[-1],
                "y_pred_indexes": [yp["id"] for yp in y_pred_],
                "y_true_indexes": [yt["id"] for yt in y_true_],
                "y_pred_matches": y_pred_matches,
                "y_true_matches": y_true_matches,
                "y_pred_scores": [yp["score"] for yp in y_pred_],
                "y_true_ignore": y_true_ignore,
                "y_pred_ignore": y_pred_ignore,
                }

    def _aggregate(  # pylint: disable=R0915
            self,
            label_ids: list[int],
            images_ids: list[int],
            images_results: list[dict[str, Any] | None]
            ) -> dict[str, np.ndarray]:
        """
        Aggregate images results.

        Parameters
        ----------
        label_ids : list[int]
            Overall label ids.
        images_ids : list[int]
            Overall image ids.
        images_results : list[dict[str, Any] | None]
            List of dictionaries containing images results.

        Returns
        -------
        dict[str, np.ndarray]
            Aggregated results.
        """
        # Settings
        iou_thresholds_len = len(self.iou_thresholds)
        recall_thresholds_len = len(self.recall_thresholds)
        label_ids_len = len(label_ids)
        area_range_len = len(self.area_ranges)
        max_detection_thresholds_len = len(self.max_detection_thresholds)
        images_ids_len = len(images_ids)

        # Initialize
        average_precision = -np.ones((
            iou_thresholds_len,
            recall_thresholds_len,
            label_ids_len,
            area_range_len,
            max_detection_thresholds_len
            )
        )
        average_recall = -np.ones((
            iou_thresholds_len,
            label_ids_len,
            area_range_len,
            max_detection_thresholds_len
            )
        )
        scores = -np.ones((
            iou_thresholds_len,
            recall_thresholds_len,
            label_ids_len,
            area_range_len,
            max_detection_thresholds_len
            )
        )

        # Retrieve images_results at each label, area range,
        # and max number of detections
        for label_id_index, _ in enumerate(label_ids):  # pylint: disable=R1702
            n_label = label_id_index*area_range_len*images_ids_len
            for area_range_index, _ in enumerate(self.area_ranges):
                n_area_range = area_range_index*images_ids_len
                for max_det_index, max_det in enumerate(
                        self.max_detection_thresholds):
                    images_results_full = [
                        images_results[n_label + n_area_range + i]
                        for i, _ in enumerate(images_ids)
                        ]
                    images_results_ = [e for e in images_results_full
                                       if e is not None]
                    if len(images_results_) == 0:
                        continue
                    y_pred_scores = np.concatenate(
                        [e["y_pred_scores"][:max_det]
                         for e in images_results_]
                        )

                    if len(y_pred_scores) == 0:
                        indexes = ()
                        y_pred_scores_sorted = y_pred_scores
                    else:
                        indexes, y_pred_scores_sorted = zip(*sorted(
                            enumerate(y_pred_scores),
                            key=lambda x: x[1],
                            reverse=True)
                            )

                    y_pred_matches = np.concatenate(
                        [e["y_pred_matches"][:, :max_det]
                         for e in images_results_],
                        axis=1
                        )[:, indexes]
                    y_pred_ignore = np.concatenate(
                        [e["y_pred_ignore"][:, :max_det]
                         for e in images_results_],
                        axis=1
                        )[:, indexes]
                    y_true_ignore = np.concatenate(
                        [e["y_true_ignore"] for e in images_results_])
                    not_ignore = np.count_nonzero(y_true_ignore == 0)
                    if not_ignore == 0:
                        continue
                    tps = np.logical_and(
                        y_pred_matches,
                        np.logical_not(y_pred_ignore)
                        )
                    fps = np.logical_and(
                        np.logical_not(y_pred_matches),
                        np.logical_not(y_pred_ignore)
                        )

                    tp_sum = np.cumsum(tps, axis=1)\
                        .astype(dtype=float)
                    fp_sum = np.cumsum(fps, axis=1)\
                        .astype(dtype=float)
                    for iou_threshold_index, (tp_, fp_) in enumerate(
                            zip(tp_sum, fp_sum)):
                        tp_ = np.array(tp_)
                        fp_ = np.array(fp_)
                        n_d = len(tp_)
                        recall = tp_ / not_ignore
                        precision = tp_ / (fp_+tp_+np.spacing(1))
                        qty = np.zeros((recall_thresholds_len,))
                        ss_ = np.zeros((recall_thresholds_len,))

                        if n_d:
                            average_recall[
                                iou_threshold_index,
                                label_id_index,
                                area_range_index,
                                max_det_index
                                ] = recall[-1]
                        else:
                            average_recall[
                                iou_threshold_index,
                                label_id_index,
                                area_range_index,
                                max_det_index
                                ] = 0

                        # Interpolation P-R Curve
                        interpolated_precision = np.maximum.accumulate(
                            precision[::-1])[::-1]

                        indexes_ = np.searchsorted(
                            recall,
                            self.recall_thresholds,
                            side="left"
                            )
                        try:
                            for ri_, pi_ in enumerate(indexes_):
                                qty[ri_] = interpolated_precision[pi_]
                                ss_[ri_] = y_pred_scores_sorted[pi_]
                        except IndexError:
                            pass
                        average_precision[
                            iou_threshold_index,
                            :,
                            label_id_index,
                            area_range_index,
                            max_det_index
                            ] = np.array(qty)
                        scores[
                            iou_threshold_index,
                            :,
                            label_id_index,
                            area_range_index,
                            max_det_index
                            ] = np.array(ss_)
        return {
            "AP": average_precision,
            "AR": average_recall
            }

    def _get_mean(
            self,
            iou_threshold: float | list[float] | np.ndarray | None = None,
            area_range_key: str | list[str] | np.ndarray | None = None,
            max_detection_threshold: (int | list[int] | np.ndarray
                                      | None) = None,
            label_id: int | list[int] | np.ndarray | None = None,
            metrics: (Literal["AP", "AR"] | list[Literal["AP", "AR"]]
                      | None) = None,
            include_spec: bool = False,
            prefix: str = "m",
            results: dict[str, Any] | type[_Missing] = _Missing,
            label_ids: list[int] | np.ndarray | type[_Missing] = _Missing,
            ) -> dict[str, float | dict[str, list]]:
        """
        Calculate mean for Average-Precision (mAP) and Average-Recall (mAR).

        Parameters
        ----------
        iou_threshold : float | list[float] | np.ndarray | None, optional
            IoU threshold on which calculate the mean.
            It can be a `float`, a list of floats, `np.ndarray`
            or `None`; all values must be inlcuded in the
            constructor argument `iou_thresholds`.
            If `None`, all input `iou_thresholds` will be used.
            The default is `None`.
        area_range_key : str | list[str] | np.ndarray | None, optional
            Area range key on which calculate the mean.
            It can be a `str`, a list of strings, `np.ndarray`,
            or `None`; all values must be included in the
            constructor argument `area_ranges`.
            If `None`, all input `area_ranges` keys will be used.
            The default is `None`.
        max_detection_threshold : int | list[int] |
                                   np.ndarray | None), optional
            Threshold on maximum detections per image on
            which calculate the mean.
            It can be a `int`, a list of integers, `np.ndarray`
            or `None`; all values must be inlcuded in the
            constructor argument `max_detection_thresholds`.
            If `None`, all input `max_detection_thresholds`
            will be used.
            The default is `None`.
        label_id : int | list[int] | np.ndarray | None, optional
            Label ids on which calculate the mean.
            If `class_metrics` is `True`, `label_id` must be
            included in the label ids of the provided `y_true`.
            If `class_metrics` is `False`, `label_id` must be `-1`
            (in this case equivalent to `None`).
            If `None`, all labels will be used.
            The default is `None`.
        metrics : Literal["AP", "AR"] | list[Literal["AP", "AR"]] | None,
                  optional
            Metrics on which calculate the mean.
            If `None`, both `"AP"` and `"AR"` will be used.
            The default is `None`.
        include_spec : bool, optional
            Whether to include mean settings specification.
            The default is `False`.
        prefix : str, optional
            Prefix to add to metrics keys.
            The default is `m`.
        results : dict[str, Any] | type[_Missing], optional
            Dictionary containing aggregated images results.
            If `_Missing` an error will be raised.
            The default is `_Missing`.
        label_ids : list[int] | np.ndarray | type[_Missing], optional
            All label ids found in `y_true`.
            If `_Missing` an error will be raised.
            The default is `_Missing`.

        Returns
        -------
        dict[str, float | dict[str, list]]
            Dictionary containing the values of precision and recall.
            If `include_spec` input parameters info will be added.
        """
        # Sanity check
        # results
        if results is _Missing:
            raise TypeError("`results` must be provided.")
        results_ = cast(dict[str, Any], results)
        # label_ids
        if label_ids is _Missing:
            raise TypeError("`label_ids` must be passed.")

        # Default
        default_value = {
            "iou_threshold": self.iou_thresholds,
            "label_id": np.array(label_ids),
            "area_range_key": np.array(list(self.area_ranges.keys())),
            "max_detection_threshold": self.max_detection_thresholds,
            }

        mean_model = MeanModel.model_validate(
            {
                "iou_threshold": iou_threshold,
                "area_range_key": area_range_key,
                "max_detection_threshold": max_detection_threshold,
                "label_id": label_id,
                "metrics": metrics,
                "include_spec": include_spec,
                "prefix": prefix
                },
            context={"default_value": default_value, "default_flag": None}
            )
        metrics = mean_model.metrics
        include_spec = mean_model.include_spec
        prefix = mean_model.prefix

        mean_params = {
            "iou_threshold": mean_model.iou_threshold,
            "label_id": mean_model.label_id,
            "area_range_key": mean_model.area_range_key,
            "max_detection_threshold": mean_model.max_detection_threshold,
            }

        # Indexes
        indexes = {
            key: get_indexes(default_value[key], value)
            for key, value in mean_params.items()
            }

        # Sanity check
        for key, value in mean_params.items():
            if len(value) != len(indexes[key]):
                raise ValueError(
                    f"Input parameter {key}: {value} not found "
                    f"in initial settings which includes {default_value[key]}."
                    )

        # Assigns slice(None) if the indices match the entire dimension
        # of results array.
        indexes_ = {
            key: (
                np.array([slice(None)]) if np.equal(
                    indexes[key],
                    np.arange(len(default_value[key]))
                    ).all() else indexes[key])
            for key in indexes.keys()
        }

        combinations_indexes = [
            dict(zip(indexes_.keys(), values))
            for values in product(*(indexes_[key] for key in indexes_.keys()))
            ]

        output: dict[str, float | dict[str, list]] = {}
        suffix = get_suffix(
            iou_threshold=mean_params["iou_threshold"],
            area_range_key=mean_params["area_range_key"],
            max_detection_threshold=mean_params["max_detection_threshold"]
            )
        for metric in metrics:
            slices: list[tuple]
            if metric == "AP":
                slices = [(
                    index["iou_threshold"],
                    slice(None),
                    index["label_id"],
                    index["area_range_key"],
                    index["max_detection_threshold"],
                    ) for index in combinations_indexes]
            elif metric == "AR":
                slices = [(
                    index["iou_threshold"],
                    index["label_id"],
                    index["area_range_key"],
                    index["max_detection_threshold"],
                    ) for index in combinations_indexes]
            values = np.stack([results_[metric][slice_] for slice_ in slices])
            values = values[values > -1]
            mean_values = -1 if len(values) == 0 else np.mean(values)
            output[f"{prefix}{metric}{suffix}"] = float(mean_values)

        if include_spec:
            output |= {
                "spec": {key: value.tolist()
                         for key, value in mean_params.items()}
                }

        return output

    def _get_standard(
            self,
            mean_evaluator: Callable,
            label_id: int | list[int] | np.ndarray | None,
            prefix: str,
            ) -> dict[str, float | dict[str, list]]:
        """
        Get standard metrics output.

        Parameters
        ----------
        mean_evaluator : Callable
            Mean evaluator function.
        label_id : int | list[int] | np.ndarray | None
            Label ids.
            If `None`, all labels will be used.
            The default is `None`.
        prefix : str
            Prefix to add to metrics keys.

        Returns
        -------
        dict[str, float | dict[str, list]]
            Dictionary with metrics output.
        """
        standard_params = []

        for combination in copy.deepcopy(_STANDARD_OUTPUT):
            if (combination["iou_threshold"] is not None) and (
                    combination["iou_threshold"] not in self.iou_thresholds):
                combination["iou_threshold"] = None

            if combination["area_range_key"] not in self.area_ranges.keys():
                combination["area_range_key"] = None

            if (combination["max_detection_threshold"] not in
                    self.max_detection_thresholds):
                combination["max_detection_threshold"] = None
            standard_params.append(combination)

        output: dict[str, float | dict[str, list]] = {}
        for _param in standard_params:
            output |= mean_evaluator(
                **_param,
                include_spec=False,
                label_id=label_id,
                prefix=prefix,
                )

        output = dict(sorted(output.items()))
        return output

__init__(iou_thresholds=_Missing, recall_thresholds=_Missing, max_detection_thresholds=_Missing, area_ranges=_Missing, class_metrics=False, box_format='xywh')

Initialize.

Parameters:

Name Type Description Default
iou_thresholds float | list[float] | ndarray | type[_Missing]

IoU thresholds. If not specified (_Missing), the default (COCO) is used and corresponds to the stepped range [0.5,...,0.95] with step 0.05 (10 values). The default is _Missing.

_Missing
recall_thresholds float | list[float] | ndarray | type[_Missing]

Recall thresholds. If not specified (_Missing), the default (COCO) is used and corresponds to the stepped range [0,...,1] with step 0.01 (101 values). The default is _Missing.

_Missing
max_detection_thresholds int | list[int] | ndarray | None | type[_Missing]

Thresholds on maximum detections per image. If not specified (_Missing), the default (COCO) is used and corresponds to the list [1, 10, 100]. If None, no limit to detections per image will be set. The default is _Missing.

_Missing
area_ranges dict[str, list[float] | ndarray] | None | type[_Missing]

Area ranges. If not specified, the default (COCO) is used and corresponds to:
{ "all": [0 ** 2, 1e5 ** 2], "small": [0 ** 2, 32 ** 2], "medium": [32 ** 2, 96 ** 2], "large": [96 ** 2, 1e5 ** 2] } If None, no area range limits will be set. The default is _Missing.

_Missing
class_metrics bool

Option to enable per-class metrics (See compute() method). Has a performance impact. The default is False.

False
box_format Literal['xyxy', 'xywh', 'cxcywh']

Bounding box format. Supported formats are:
- "xyxy": boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.
- "xywh": boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height. This is the default format; all input formats will be converted to this.
- "cxcywh": boxes are represented via centre, width and height, cx, cy being center of box, w, h being width and height.
The default is "xywh".

'xywh'

Returns:

Type Description
None
Source code in src/od_metrics/od_metrics.py
def __init__(
        self,
        iou_thresholds: (float | list[float] | np.ndarray |
                         type[_Missing]) = _Missing,
        recall_thresholds: (float | list[float] | np.ndarray |
                            type[_Missing]) = _Missing,
        max_detection_thresholds: (int | list[int] | np.ndarray | None |
                                   type[_Missing]) = _Missing,
        area_ranges: (dict[str, list[float] | np.ndarray] | None |
                      type[_Missing]) = _Missing,
        class_metrics: bool = False,
        box_format: Literal["xyxy", "xywh", "cxcywh"] = "xywh",
        ) -> None:
    """
    Initialize.

    Parameters
    ----------
    iou_thresholds : float | list[float] | np.ndarray \
                      | type[_Missing], optional
        IoU thresholds.
        If not specified (`_Missing`), the default (COCO) is used and
        corresponds to the stepped range `[0.5,...,0.95]` with step
        `0.05` (`10` values).
        The default is `_Missing`.
    recall_thresholds : float | list[float] | np.ndarray \
                         | type[_Missing], optional
        Recall thresholds.
        If not specified (`_Missing`), the default (COCO) is used and
        corresponds to the stepped range `[0,...,1]` with step
        `0.01` (`101` values).
        The default is `_Missing`.
    max_detection_thresholds : int | list[int] | np.ndarray | None \
                                | type[_Missing], optional
        Thresholds on maximum detections per image.
        If not specified (`_Missing`), the default (COCO) is used and
        corresponds to the list `[1, 10, 100]`.
        If `None`, no limit to detections per image will be set.
        The default is `_Missing`.
    area_ranges : dict[str, list[float] | np.ndarray] \
                   | None | type[_Missing], optional
        Area ranges.
        If not specified, the default (COCO) is used and corresponds to:
        <br>
        `{
            "all": [0 ** 2, 1e5 ** 2],
            "small": [0 ** 2, 32 ** 2],
            "medium": [32 ** 2, 96 ** 2],
            "large": [96 ** 2, 1e5 ** 2]
            }`
        If `None`, no area range limits will be set.
        The default is `_Missing`.
    class_metrics : bool, optional
        Option to enable per-class metrics (See `compute()` method).
        Has a performance impact.
        The default is `False`.
    box_format: Literal["xyxy", "xywh", "cxcywh"], optional
        Bounding box format.
        Supported formats are:<br>
            - `"xyxy"`: boxes are represented via corners,
                    x1, y1 being top left and x2, y2
                    being bottom right.<br>
            - `"xywh"`: boxes are represented via corner,
                    width and height, x1, y2 being top
                    left, w, h being width and height.
                    This is the default format; all
                    input formats will be converted
                    to this.<br>
            - `"cxcywh"`: boxes are represented via centre,
                    width and height, cx, cy being
                    center of box, w, h being width
                    and height.<br>
        The default is `"xywh"`.

    Returns
    -------
    None
    """
    constructor_model = ConstructorModel.model_validate(
        {
            "iou_thresholds": iou_thresholds,
            "recall_thresholds": recall_thresholds,
            "max_detection_thresholds": max_detection_thresholds,
            "area_ranges": area_ranges,
            "class_metrics": class_metrics,
            "box_format": box_format,
            },
        context={"default_value": DEFAULT_COCO, "default_flag": _Missing}
        )
    self.iou_thresholds: np.ndarray = constructor_model.iou_thresholds
    self.recall_thresholds: np.ndarray = (
        constructor_model.recall_thresholds)
    self.max_detection_thresholds: np.ndarray = (
        constructor_model.max_detection_thresholds)
    self.area_ranges: dict[str | None, list[float]] = (
        constructor_model.area_ranges)
    self.class_metrics: bool = constructor_model.class_metrics
    self.box_format: Literal["xyxy", "xywh", "cxcywh"] = (
        constructor_model.box_format)

compute(y_true, y_pred, extended_summary=False)

Compute metrics.

Parameters:

Name Type Description Default
y_true list[dict]

A list consisting of dictionaries each containing the key-values: each dictionary corresponds to the ground truth of a single image. Parameters that should be provided per dict:

boxes : list[list[float]] | np.ndarray
    List of floats lists or `np.ndarray`; the length of the
    list/array correspond to the number of boxes and each
    list/array is 4-float specifying the box coordinates in
    the format specified in the constructor.
labels : list[int] | np.ndarray
    List of integers or `np.ndarray` specifying the ground
    truth classes for the boxes: the length corresponds to
    the number of boxes.
iscrowd : list[bool | Literal[0, 1]] | np.ndarray
    List of integers or `np.ndarray` specifying crowd regions:
    the length corresponds to the number of boxes.
    The values can be `bool` or `0`/`1` indicating whether the
    bounding box indicates a crowd of objects.
    Value is optional, and if not provided it will
    automatically be set to `False`.
area : list[float] | np.ndarray
    A list of `float` or `np.ndarray` specifying the area of
    the objects: the length corresponds to the number of
    boxes.
    Value is optional, and if not provided will
    be automatically calculated based on
    the bounding box provided.
    Only affects which samples contribute the specific
    area range.
required
y_pred list[dict]

A list consisting of dictionaries each containing the key-values: each dictionary corresponds to the predictions of a single image. Parameters that should be provided per dict:

boxes : list[list[float]] | np.ndarray
    List of float lists or `np.ndarray`; the length of the
    list/array correspond to the number of boxes and each
    list/array is 4-float specifying the box coordinates in
    the format specified in the constructor.
scores : list[float] | np.ndarray
    List of floats or `np.ndarray` specifying the score for
    the boxes: the length corresponds to the number of boxes.
labels : list[int] | np.ndarray
    List of integers or `np.ndarray` specifying the ground
    truth classes for the boxes: the length corresponds to
    the number of boxes.
required
extended_summary bool

Option to enable extended summary with additional metrics including IoU, AP (Average Precision), AR (Average Recall) and mean_evaluator (Callable). The output dictionary will contain the following extra key-values:

IoU : dict[tuple[int, int], np.ndarray]
       A dictionary containing the IoU values for every
       image/class combination e.g. `IoU[(0,0)]`
       would contain the IoU for image `0` and class `0`.
       Each value is a `np.ndarray` with shape `(n, m)`
       where `n` is the number of detections and `m` is
       the number of ground truth boxes for that image/class
       combination.
AP : np.ndarray
      Average precision: a `np.ndarray` of shape
      `(T, R, K, A, M)` containing the precision values.
      Here:
          - `T` is the number of IoU thresholds
          - `R` is the number of recall thresholds
          - `K` is the number of classes
          - `A` is the number of areas
          - `M` is the number of max detections per image
AR : np.ndarray
     A `np.ndarray` of shape `(T, K, A, M)` containing the
     averag recall values.
     Here:
         - `T` is the number of IoU thresholds
         - `K` is the number of classes
         - `A` is the number of areas
         - `M` is the number of max detections per image
mean_evaluator : Callable
    Mean evaluator function.
    Parameters are:
        iou_threshold : (float | list[float] | np.ndarray
                         | None), optional
            IoU threshold on which calculate the mean.
            It can be a `float`, a list of floats, `np.ndarray`
            or `None`; all values must be inlcuded in the
            constructor argument `iou_thresholds`.
            If `None`, all input `iou_thresholds` will be used.
            The default is `None`.
        area_range_key : (str | list[str] | np.ndarray
                          | None), optional
            Area range key on which calculate the mean.
            It can be a `str`, a list of strings, `np.ndarray`,
            or `None`; all values must be included in the
            constructor argument `area_ranges`.
            If `None`, all input `area_ranges` keys will be
            used.
            The default is `None`.
        max_detection_threshold : (int | list[int] |
                                   np.ndarray | None), optional
            Threshold on maxiumum detections per image on
            which calculate the mean.
            It can be a `int`, a list of integers, `np.ndarray`
            or `None`; all values must be inlcuded in the
            constructor argument `max_detection_thresholds`.
            If `None`, all input `max_detection_thresholds`
            will be used.
            The default is `None`.
        label_id : (int | list[int] | np.ndarray
                    | None), optional
            Label ids on which calculate the mean.
            If `class_metrics` is `True`, `label_id` must be
            included in the label ids of the provided `y_true`.
            If `class_metrics` is `False`, `label_id` must be
            `-1` (in this case equivalent to `None`).
            If `None`, all labels will be used.
            The default is `None`.
        metrics : (Literal["AP", "AR"]
                   | list[Literal["AP", "AR"]] | None),
                   optional
            Metrics on which calculate the mean.
            If `None`, both `"AP"` and `"AR"` will be used.
            The default is `None`.
        include_spec : bool, optional
            Whether to include mean settings specification.
            The default is `False`.
        prefix : str, optional
            Prefix to add to metrics keys.
            The default is `m`.
False

Returns:

Type Description
dict[str, float | int | list[int] | dict | ndarray | partial]

The format of the output string metric ids is defined as:

{metric}@[{iou_thresholds} | {area_ranges} | {max_detection_thresholds}]

If a field is None, the corresponding string field will be emtpy, e.g., {metric}@[{iou_thresholds} | {area_ranges}] indicate metrics calculated without limit to detections per image, i.e. max_detections_thresholds set to None. Assuming that the parameters passed to the constructor are the default ones (COCO), the output dictionary will contain the following key-values:
mAP@[.5 | all | 100]
mAR@[.5 | all | 100]
mAP@[.75 | all | 100]
mAR@[.75 | all | 100]
mAR@[.5:.95 | all | 1]
mAR@[.5:.95 | all | 10]
mAR@[.5:.95 | all | 100]
mAP@[.5:.95 | all | 100]
mAP@[.5:.95 | large | 100]
mAR@[.5:.95 | large | 100]
mAP@[.5:.95 | medium | 100]
mAR@[.5:.95 | medium | 100]
mAP@[.5:.95 | small | 100]
mAR@[.5:.95 | small | 100]
If class_metrics is True, the output dictionary will contain the additional key class_metrics, a dictionary with class as key and value each of the above metrics. If extended_summary is True, the output dictionary will contain the additional keys IoU, AP, AR and mean_evaluator. (See extended_summary)

Source code in src/od_metrics/od_metrics.py
def compute(
        self,
        y_true: list[dict],
        y_pred: list[dict],
        extended_summary: bool = False,
        ) -> dict[str, float | int | list[int]
                  | dict | np.ndarray | partial]:
    """
    Compute metrics.

    Parameters
    ----------
    y_true : list[dict]
        A list consisting of dictionaries each containing
        the key-values: each dictionary corresponds to the ground truth
        of a single image.
        Parameters that should be provided per dict:

            boxes : list[list[float]] | np.ndarray
                List of floats lists or `np.ndarray`; the length of the
                list/array correspond to the number of boxes and each
                list/array is 4-float specifying the box coordinates in
                the format specified in the constructor.
            labels : list[int] | np.ndarray
                List of integers or `np.ndarray` specifying the ground
                truth classes for the boxes: the length corresponds to
                the number of boxes.
            iscrowd : list[bool | Literal[0, 1]] | np.ndarray
                List of integers or `np.ndarray` specifying crowd regions:
                the length corresponds to the number of boxes.
                The values can be `bool` or `0`/`1` indicating whether the
                bounding box indicates a crowd of objects.
                Value is optional, and if not provided it will
                automatically be set to `False`.
            area : list[float] | np.ndarray
                A list of `float` or `np.ndarray` specifying the area of
                the objects: the length corresponds to the number of
                boxes.
                Value is optional, and if not provided will
                be automatically calculated based on
                the bounding box provided.
                Only affects which samples contribute the specific
                area range.
    y_pred : list[dict]
        A list consisting of dictionaries each containing
        the key-values: each dictionary corresponds to the predictions
        of a single image.
        Parameters that should be provided per dict:

            boxes : list[list[float]] | np.ndarray
                List of float lists or `np.ndarray`; the length of the
                list/array correspond to the number of boxes and each
                list/array is 4-float specifying the box coordinates in
                the format specified in the constructor.
            scores : list[float] | np.ndarray
                List of floats or `np.ndarray` specifying the score for
                the boxes: the length corresponds to the number of boxes.
            labels : list[int] | np.ndarray
                List of integers or `np.ndarray` specifying the ground
                truth classes for the boxes: the length corresponds to
                the number of boxes.
    extended_summary : bool, optional
        Option to enable extended summary with additional metrics
        including `IoU`, `AP` (Average Precision), `AR` (Average Recall)
        and `mean_evaluator` (`Callable`).
        The output dictionary will contain the following extra key-values:

            IoU : dict[tuple[int, int], np.ndarray]
                   A dictionary containing the IoU values for every
                   image/class combination e.g. `IoU[(0,0)]`
                   would contain the IoU for image `0` and class `0`.
                   Each value is a `np.ndarray` with shape `(n, m)`
                   where `n` is the number of detections and `m` is
                   the number of ground truth boxes for that image/class
                   combination.
            AP : np.ndarray
                  Average precision: a `np.ndarray` of shape
                  `(T, R, K, A, M)` containing the precision values.
                  Here:
                      - `T` is the number of IoU thresholds
                      - `R` is the number of recall thresholds
                      - `K` is the number of classes
                      - `A` is the number of areas
                      - `M` is the number of max detections per image
            AR : np.ndarray
                 A `np.ndarray` of shape `(T, K, A, M)` containing the
                 averag recall values.
                 Here:
                     - `T` is the number of IoU thresholds
                     - `K` is the number of classes
                     - `A` is the number of areas
                     - `M` is the number of max detections per image
            mean_evaluator : Callable
                Mean evaluator function.
                Parameters are:
                    iou_threshold : (float | list[float] | np.ndarray
                                     | None), optional
                        IoU threshold on which calculate the mean.
                        It can be a `float`, a list of floats, `np.ndarray`
                        or `None`; all values must be inlcuded in the
                        constructor argument `iou_thresholds`.
                        If `None`, all input `iou_thresholds` will be used.
                        The default is `None`.
                    area_range_key : (str | list[str] | np.ndarray
                                      | None), optional
                        Area range key on which calculate the mean.
                        It can be a `str`, a list of strings, `np.ndarray`,
                        or `None`; all values must be included in the
                        constructor argument `area_ranges`.
                        If `None`, all input `area_ranges` keys will be
                        used.
                        The default is `None`.
                    max_detection_threshold : (int | list[int] |
                                               np.ndarray | None), optional
                        Threshold on maxiumum detections per image on
                        which calculate the mean.
                        It can be a `int`, a list of integers, `np.ndarray`
                        or `None`; all values must be inlcuded in the
                        constructor argument `max_detection_thresholds`.
                        If `None`, all input `max_detection_thresholds`
                        will be used.
                        The default is `None`.
                    label_id : (int | list[int] | np.ndarray
                                | None), optional
                        Label ids on which calculate the mean.
                        If `class_metrics` is `True`, `label_id` must be
                        included in the label ids of the provided `y_true`.
                        If `class_metrics` is `False`, `label_id` must be
                        `-1` (in this case equivalent to `None`).
                        If `None`, all labels will be used.
                        The default is `None`.
                    metrics : (Literal["AP", "AR"]
                               | list[Literal["AP", "AR"]] | None),
                               optional
                        Metrics on which calculate the mean.
                        If `None`, both `"AP"` and `"AR"` will be used.
                        The default is `None`.
                    include_spec : bool, optional
                        Whether to include mean settings specification.
                        The default is `False`.
                    prefix : str, optional
                        Prefix to add to metrics keys.
                        The default is `m`.

    Returns
    -------
    dict[str, float | int | list[int] | dict | np.ndarray | partial]
        The format of the output string metric ids is defined as:

        `{metric}@[{iou_thresholds} | {area_ranges}
                  | {max_detection_thresholds}]`

        If a field is `None`, the corresponding string field will be emtpy,
        e.g., `{metric}@[{iou_thresholds} | {area_ranges}]`
        indicate metrics calculated without limit to detections per image,
        i.e. `max_detections_thresholds` set to `None`.
        Assuming that the parameters passed to the constructor
        are the default ones (COCO), the output dictionary will
        contain the following key-values: <br>
            `mAP@[.5 | all | 100]` <br>
            `mAR@[.5 | all | 100]` <br>
            `mAP@[.75 | all | 100]` <br>
            `mAR@[.75 | all | 100]` <br>
            `mAR@[.5:.95 | all | 1]` <br>
            `mAR@[.5:.95 | all | 10]` <br>
            `mAR@[.5:.95 | all | 100]` <br>
            `mAP@[.5:.95 | all | 100]` <br>
            `mAP@[.5:.95 | large | 100]` <br>
            `mAR@[.5:.95 | large | 100]` <br>
            `mAP@[.5:.95 | medium | 100]` <br>
            `mAR@[.5:.95 | medium | 100]` <br>
            `mAP@[.5:.95 | small | 100]` <br>
            `mAR@[.5:.95 | small | 100]` <br>
        If `class_metrics` is `True`, the output dictionary will contain
        the additional key `class_metrics`, a dictionary with class as key
        and value each of the above metrics.
        If `extended_summary` is `True`, the output dictionary will contain
        the additional keys `IoU`, `AP`, `AR` and `mean_evaluator`.
        (See `extended_summary`)
    """
    # Image ids
    images_ids = list(range(len(y_true)))

    # Parse Annotations
    compute_model = ComputeModel.model_validate(
        {
            "y_true": y_true,
            "y_pred": y_pred,
            "extended_summary": extended_summary,
            },
        context={"box_format": self.box_format}
        )
    y_true = [y_true_.dict() for y_true_ in compute_model.y_true]
    y_pred = [y_pred_.dict() for y_pred_ in compute_model.y_pred]
    extended_summary = compute_model.extended_summary

    # Get label_ids from y_true
    label_ids = np.unique([_annotation["label_id"]
                           for _annotation in y_true]).tolist()
    _label_ids = label_ids if self.class_metrics else [-1]

    # y_true, y_pred --> default_dict (keys: (image_id, label_id))
    y_true_ddict = defaultdict(
        list,
        [(k, list(v)) for k, v in groupby(
            sorted(y_true, key=lambda x: (x["image_id"], x["label_id"])),
            key=lambda x: (x["image_id"], x["label_id"]))]
        )
    y_pred_ddict = defaultdict(
        list,
        [(k, list(v)) for k, v in groupby(
            sorted(y_pred, key=lambda x: (x["image_id"], x["label_id"])),
            key=lambda x: (x["image_id"], x["label_id"]))]
        )

    # Compute IoU
    ious = {(image_id, label_id): self._compute_iou(
        y_true=y_true_ddict,
        y_pred=y_pred_ddict,
        image_id=image_id,
        label_id=label_id,
        label_ids=label_ids,
        ) for image_id, label_id in product(images_ids, _label_ids)
        }

    # Evaluate each image
    images_results = [self._evaluate_image(
        y_true=y_true_ddict,
        y_pred=y_pred_ddict,
        image_id=image_id,
        label_id=label_id,
        label_ids=label_ids,
        area_range=_area_range,
        ious=ious
        ) for label_id, _area_range, image_id in
        product(_label_ids, self.area_ranges.values(), images_ids)
    ]

    # Aggregate results
    results = self._aggregate(
        label_ids=_label_ids,
        images_ids=images_ids,
        images_results=images_results,
        )

    # Mean evaluator
    mean_evaluator = partial(
        self._get_mean,
        results=results,
        label_ids=_label_ids
        )

    # Get standard output values (globally)
    standard_results = self._get_standard(
        mean_evaluator=mean_evaluator,
        label_id=None,
        prefix="m",
        )

    # Prepare output
    output: dict[str, float | int | list[int]
                 | dict | np.ndarray | partial] = {}
    output |= standard_results

    # Class metrics
    if self.class_metrics:
        output |= {
            "class_metrics": {
                label_id: self._get_standard(
                    mean_evaluator=mean_evaluator,
                    label_id=label_id,
                    prefix="",
                    ) for label_id in _label_ids
                    }
            }

    # Add metadata
    output |= {
        "classes": label_ids,
        "n_images": len(images_ids)
        }

    if extended_summary:
        output |= ({k: v for k, v in results.items() if k in ["AP", "AR"]}
                   | {
                       "IoU": ious,
                       "mean_evaluator": mean_evaluator,
                       }
                   )

    return output

iou(y_true, y_pred, iscrowd=None, box_format='xywh')

Calculate IoU between bounding boxes.

The standard iou of a ground truth y_true and detected y_pred object is:

\[iou(\text{y_true}, \text{y_pred}) = \frac{\text{y_true} \bigcap \text{y_pred}} {\text{y_true}\bigcup \text{y_pred}}\]
Notes

For crowd regions, COCO use a modified criteria. If a y_true object is marked as iscrowd, it is permissible for a detected object y_pred to match any subregion of the y_true. Choosing y_true' in the crowd y_true that best matches the y_pred can be done using:

\[\text{y_true'} = \text{y_pred} \bigcap \text{y_true}\]

Since by definition:

\[ \text{y_true'} \bigcup \text{y_pred} = \text{y_pred}\]

computing:

\[iou(\text{y_true}, \text{y_pred}, \text{iscrowd}) = iou(\text{y_true'}, \text{y_pred}) = \frac{\text{y_true} \bigcap \text{y_pred}}{\text{y_pred}}\]

For crowd regions in ground truth, this modified criteria for IoU is applied.

Raises:

Type Description
ValueError

If iscrowd and y_true have different length (iscrowd not None).

Parameters:

Name Type Description Default
y_true ndarray | list

np.ndarray with shape (B1, 4), B1 y_true batch size.

required
y_pred ndarray | list

np.ndarray with shape (B2, 4), B2 y_pred batch size.

required
iscrowd ndarray | list[bool] | list[int] | None

Whether y_true are crowd regions. If None, it will be set to False for all y_true. The default is None.

None
box_format Literal['xyxy', 'xywh', 'cxcywh']

Bounding box format. Supported formats are:
- "xyxy": boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.
- "xywh": boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height. This is the default format; all input formats will be converted to this.
- "cxcywh": boxes are represented via centre, width and height, cx, cy being center of box, w, h being width and height.
The default is "xywh".

'xywh'

Returns:

Type Description
ndarray

IoU vector of shape (B2, B1).

Source code in src/od_metrics/od_metrics.py
def iou(
        y_true: np.ndarray | list,
        y_pred: np.ndarray | list,
        iscrowd: np.ndarray | list[bool] | list[int] | None = None,
        box_format: Literal["xyxy", "xywh", "cxcywh"] = "xywh",
        ) -> np.ndarray:
    """
    Calculate IoU between bounding boxes.

    The standard iou of a ground truth `y_true` and detected
    `y_pred` object is:

    $$iou(\\text{y_true}, \\text{y_pred}) =
        \\frac{\\text{y_true} \\bigcap \\text{y_pred}}
        {\\text{y_true}\\bigcup \\text{y_pred}}$$

    Notes
    -----
    For `crowd` regions, COCO use a modified criteria.
    If a `y_true` object is marked as `iscrowd`, it is permissible
    for a detected object `y_pred` to match any subregion of the `y_true`.
    Choosing `y_true'` in the crowd `y_true` that best matches the `y_pred`
    can be done using:

    $$\\text{y_true'} = \\text{y_pred} \\bigcap \\text{y_true}$$

    Since by definition:

    $$ \\text{y_true'} \\bigcup \\text{y_pred} = \\text{y_pred}$$

    computing:

    $$iou(\\text{y_true}, \\text{y_pred}, \\text{iscrowd}) =
        iou(\\text{y_true'}, \\text{y_pred}) =
        \\frac{\\text{y_true} \\bigcap \\text{y_pred}}{\\text{y_pred}}$$

    For crowd regions in ground truth, this modified criteria for IoU
    is applied.

    Raises
    ------
    ValueError
        If `iscrowd` and `y_true` have different length (iscrowd not None).

    Parameters
    ----------
    y_true : np.ndarray | list
        `np.ndarray` with shape `(B1, 4)`, `B1` `y_true` batch size.
    y_pred : np.ndarray | list
        `np.ndarray` with shape `(B2, 4)`, `B2` `y_pred` batch size.
    iscrowd : np.ndarray | list[bool] | list[int] | None
        Whether `y_true` are crowd regions.
        If `None`, it will be set to `False` for all `y_true`.
        The default is `None`.
    box_format: Literal["xyxy", "xywh", "cxcywh"], optional
        Bounding box format.
        Supported formats are:<br>
            - `"xyxy"`: boxes are represented via corners,
                    x1, y1 being top left and x2, y2
                    being bottom right.<br>
            - `"xywh"`: boxes are represented via corner,
                    width and height, x1, y2 being top
                    left, w, h being width and height.
                    This is the default format; all
                    input formats will be converted
                    to this.<br>
            - `"cxcywh"`: boxes are represented via centre,
                    width and height, cx, cy being
                    center of box, w, h being width
                    and height.<br>
        The default is `"xywh"`.

    Returns
    -------
    np.ndarray
        IoU vector of shape `(B2, B1)`.
    """
    if len(y_pred) == 0 or len(y_true) == 0:
        return np.array([])
    # iscrowd
    if iscrowd is not None:
        if len(iscrowd) != len(y_true):
            raise ValueError("`iscrowd` and `y_true` should have the same "
                             "length.")
    else:
        iscrowd = [False]*len(y_true)
    # To np.ndarray and xyxy box format
    y_true = np.array([to_xyxy(bbox_, box_format) for bbox_ in y_true])
    y_pred = np.array([to_xyxy(bbox_, box_format) for bbox_ in y_pred])

    # pylint: disable-next=W0632
    xmin1, ymin1, xmax1, ymax1 = np.hsplit(y_pred, 4)
    # pylint: disable-next=W0632
    xmin2, ymin2, xmax2, ymax2 = np.hsplit(y_true, 4)

    # Intersection
    xmin_i = np.maximum(xmin1.T, xmin2).T
    ymin_i = np.maximum(ymin1.T, ymin2).T
    xmax_i = np.minimum(xmax1.T, xmax2).T
    ymax_i = np.minimum(ymax1.T, ymax2).T
    inter_area = (np.maximum((xmax_i - xmin_i), 0)
                  * np.maximum((ymax_i - ymin_i), 0))
    # Union
    y_pred_area = (xmax1 - xmin1) * (ymax1 - ymin1)
    y_true_area = (xmax2 - xmin2) * (ymax2 - ymin2)
    union_area = y_pred_area + y_true_area.T - inter_area
    det = np.where(
        iscrowd,
        y_pred_area,
        union_area
        )

    result = np.divide(inter_area, det, out=np.zeros(inter_area.shape),
                       where=det != 0)
    return result